Sorafenib and Liver Regeneration in Rats

Kasper Jarlhelt Andersen
Ph.D. student
Surgical Gastroenterology
Aarhus University Hospital
Denmark
Presentation is based on following articles:

1. **The natural history of liver regeneration in rats: Description of an animal model for liver regeneration studies.**
 - Published in *International Journal of Surgery*, 2013
 - Kasper Jarlhelt Andersen, Anders Riegels Knudsen, Anne-Sofie Kannerup, Hideki Sasanuma, Jens Randel Nyengaard, Stephen Hamilton-Dutoit, Erland J. Erlandsen, Bo Jørgensen, Frank Viborg Mortensen.
 - DOI: 10.1016/j.ijsu.2013.07.009

2. **Sorafenib inhibits liver regeneration in rats.**
 - Published in *HPB*, 2013
 - Kasper Jarlhelt Andersen, Anders Riegels Knudsen, Anne-Sofie Kannerup, Jens Randel Nyengaard, Stephen Hamilton-Dutoit, Morten Ladekarl, Frank Viborg Mortensen.
 - DOI: 10.1111/hpb.12068

3. **Postoperative but not preoperative treatment with Sorafenib inhibits liver regeneration in rats.**
 - Accepted for publication in *Journal of Surgical Research*, Primo 2014
 - Kasper Jarlhelt Andersen, Anders Riegels Knudsen, Anne-Sofie Kannerup, Jens Randel Nyengaard, Stephen Hamilton-Dutoit, Morten Ladekarl, Frank Viborg Mortensen.
Liver regeneration

- Animal studies can be used as an accelerated model of human liver regeneration.

- Many different methods to create liver regeneration in experimental animal studies:
 - Alcohol, surgery, carbon tetrachloride, galactosamine, AAF, etc.

- Surgical approach: 70 % partial hepatectomy

- Well established and used since described in 1931 by Higgins and Anderson

- However, there is no consensus of how and when to evaluate liver regeneration in animal studies.
Proliferation after liver resection in a healthy liver: Mature hepatocytes

Mature healthy hepatocytes can de-/trans-differentiate

Pathways involved in cell proliferation:

Signal transduction.
Source: en.wikipedia.org
Study I: Natural history

- Aims:
 - To investigate the natural history of liver regeneration in healthy rats.
 - To develop and test new design-based stereological methods in evaluation of liver regeneration.

- Hypothesis:
 - Liver regeneration in healthy rats, is a fast process completed after approximately one week.
Natural history: Study design

- 64 Wistar rats of 200 g.
- 70% partial hepatectomy.

Main endpoints:
- Mortality.
- Liver and body weight.
- Regeneration Rate.
- Stereological evaluation.
- BTR (Liver function).
The rats were randomised for euthanisation post operative day 1 – 8.
Natural history: Results

- Mortality:
 - 5 animals (8%) died prior to evaluation.
 - Ileus (1).
 - Suture gnawing/Intestinal perforation (1).
 - Unidentifiable causes (3).
Natural history: Results

![Body Weight Graph](image_url)
Natural history: Results

Liver Weight

Liver weight (g)

Day of Sacrifice

Before Res. Day 0
After Res. Day 0
POD 1
POD 2
POD 3
POD 4
POD 5
POD 6
POD 7
POD 8
Natural history: Results

Regeneration Rate

Day of Sacrifice

Before Res. Day 0
After Res. Day 0
POD 1
POD 2
POD 3
POD 4
POD 5
POD 6
POD 7
POD 8

0
20
40
60
80
100
120
140
Regeneration Rate
Natural history: Results

ALAT

Concentration (U/L)

Day of Sacrifice

POD 1 POD 2 POD 3 POD 4 POD 5 POD 6 POD 7 POD 8
Natural history: Results

![Graph showing BTR over Day of Sacrifice](image-url)
Hepatocyte proliferation: KI-67 staining

- Design-based stereological method for an unbiased estimation of cell proliferation.
- SURS sections immunostained for the nuclear KI-67 antigen.
- Coloring cells not in G-0 phase.
- Independent of tissue deformation.
- Standardized method not prone to inter and intra-observer variability.
Natural history: Minimal hepatocyte proliferation
Natural history: Maximal hepatocyte proliferation
Natural history: Results

Hepatocyte Proliferation

Day of Sacrifice

Ki-67 Ratio [pos cell profiles/area], mm²
Natural history: Conclusions

- The natural history of liver regeneration in rats is a dynamic process with a maximum regenerative speed on PODs 1-4 and is practically complete on POD 8.
Study II and III: Sorafenib and liver regeneration

- Sorafenib = Nexavar = BAY 43-9006.

- A multi tyrosine kinase inhibitor:
 - Anti-proliferative.
 - Anti-angiogenic.

- Approved for HCC.

- Halts tumour growth but is not curative.

- Question: Can one expect normal liver regeneration during treatment with sorafenib?
Hepatocellular carcinoma: Oncogenic pathways in cells

Neoplastic Diseases Reviews. ‘New Molecular Biomarkers...’ CancerLink.ru
Hepatocellular carcinoma: Angiogenic pathways

Sorafenib: Mechanism of action

Sorafenib targets both tumour-cell proliferation and angiogenesis in vitro

In preclinical models

Adapted from Wilhelm et al 2004

Nexavar Mechanism of Action - Nexavar

Next: The RAS/RAF/MEK/ERK Pathway and HCC

Copyright © Bayer Pharma AG
Study II: Perioperative treatment with sorafenib

Aim:
- To investigate the impact of multikinase inhibition by sorafenib on liver regeneration in healthy rats.

Hypothesis:
- Multikinase inhibition with Sorafenib, 15 mg/kg/day, in a peri-operative setting inhibits liver regeneration in healthy rats, following 70% hepatectomy.
Sorafenib peri-operative: Study design

- 60 Wistar Rats of 200 g:
 - 30 Sorafenib.
 - 30 NACL.

- Oral gavage 14 days prior to resection and until sacrifice.

- Sorafenib dose:
 - Dissolution of tablet in NACL.
 - 15 mg/kg daily.
 - Rats were given 0.75 ml each day.

- Resection consisted of 70 % PHx.
Sorafenib administration: Oral gavage
Sorafenib peri-operative: Flow chart

- The rats were randomised for euthanisation post operative day 2, 4 or 8.

3 groups of 10 rats
- 2 weeks Sorafenib
- 70 % PHx
- Continued Sorafenib
- Euthanization POD 2, 4 or 8

3 groups of 10 rats
- 2 weeks placebo
- 70 % PHx
- Continued placebo
- Euthanization POD 2, 4 or 8
Sorafenib peri-operative: Results

- Mortality:
 - Seven animals (5%) died prior to evaluation:
 - Suture gnawing/Intestinal perforation (4).
 - Unidentifiable causes (3).
 - No difference in mortality between groups
Sorafenib peri-operative: Results

Body Weight

Body Weight (g)

Day of Sacrifice

Before Res. Day 0 After Res. Day 0 POD 2 POD 4 POD 6

*p<0.001 *p<0.001 *p=0.162 *p=0.025 *p<0.001

Sorafenib Placebo
Sorafenib peri-operative: Results
Sorafenib peri-operative: Results
Sorafenib peri-operative: Results

![Graph showing proliferation - Ki 67 stereology](image)

- Day of Sacrifice:
 - POD 2
 - POD 4
 - POD 6

- Proliferation - Ki 67 stereology

- Analysis with *N=2
 - Sorafenib
 - Placebo
Sorafenib Peri-operative: Conclusions

- Multikinase inhibition with Sorafenib, in a peri-operative setting does not increase mortality in rats undergoing liver resection.

- Multikinase inhibition with Sorafenib, in a peri-operative setting inhibits liver regeneration, judged by liver weight, regeneration rate, and hepatocyte proliferation.
Study III: Pre- or post-operative treatment with sorafenib

Aim:
To investigate the impact of pre- or post-operative treatment with multikinase inhibitor, sorafenib, on liver regeneration in healthy rats.

Hypothesis:
Multikinase inhibition with Sorafenib, 15 mg/kg/day, in a pre- or post-operative setting inhibits liver regeneration in healthy rats, following 70% hepatectomy.
Sorafenib pre- or post-operative: Study design

- 120 Wistar Rats of 200 g
 - 60 Sorafenib
 - 60 NACL

- Oral gavage 14 days prior to resection or from resection and until sacrifice

- Sorafenib dose:
 - Dissolution of tablet in NACL
 - 15 mg/kg daily
 - Rats were given 0,75 ml each day

- Resection consisted of 70 % partial hepatectomy
Sorafenib pre- or post-operative: Flow chart

3 groups of 10 rats
- 2 weeks Sorafenib
- 70 % PHx
- No treatment
- Sacrificed POD 2, 4 or 8

3 groups of 10 rats
- 2 weeks placebo
- 70 % PHx
- No treatment
- Sacrificed POD 2, 4 or 8

3 groups of 10 rats
- 2 weeks No treatment
- 70 % PHx
- Sorafenib
- Sacrificed POD 2, 4 or 8

3 groups of 10 rats
- 2 weeks No treatment
- 70 % PHx
- Placebo
- Sacrificed POD 2, 4 or 8
Sorafenib pre- or post-operative: Results

- Mortality:
 - Eleven animals (9%) died following surgery.
 - Suture gnawing/Intestinal perforation (6).
 - Unidentifiable causes (5).
 - No difference in mortality between groups.
Sorafenib pre- or post-operative: Post-op
Sorafenib pre- or post-operative: Pre-op
Sorafenib pre- or post-operative: Conclusions

- Multikinase inhibition with Sorafenib, in a pre- or post-operative setting *does not increase mortality* in rats undergoing liver resection.

- Multikinase inhibition with Sorafenib, in a post-operative setting *inhibits liver regeneration*, judged by liver weight, regeneration rate, and hepatocyte proliferation.

- Multikinase inhibition with Sorafenib, in a pre-operative setting *does not inhibit liver regeneration*, judged by liver weight, regeneration rate, and hepatocyte proliferation.
Acknowledgements

Danish Cancer Society
Aarhus University
Aarhus University Hospital
Viborg Regional Hospital

Thank you for your attention
Sorafenib and Liver Regeneration in Rats

Kasper Jarlhelt Andersen
Ph.D. student
Surgical Gastroenterology
Aarhus University Hospital
Denmark